Xilinx ISE 13.2 Quick Start Tutorial
Part II
Now that you have a correctly simulating Verilog module, you will use the ISE (or WebPack) tool to synthesize your Verilog code to something that can be mapped to the Xilinx FPGA. That is, the Verilog code will be converted by ISE to some gates that are on the FPGA. To be even more specific, ISE will convert the schematic/Verilog project description into a set of configuration bits that are used to program the FPGA chip. Those configuration bits are in a .bit file and are downloaded to the board. This part of the tutorial deals with the synthesis, the implementation, and the FPGA programming.

You will use your Nexys2 board for this part of the tutorial. The Nexys2 is a powerful digital system design platform built around a Xilinx Spartan 3E FPGA. It has 16Mbytes of fast SDRAM and 16Mbytes of Flash ROM. The on-board high-speed USB2 port, together with a collection of I/O devices, data ports, and expansion connectors, allow a wide range of designs to be completed without the need for any additional components. You can get more information from Digilent at

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
[image: image20.png]

Realizing a circuit design on an FPGA board consists of three steps, which are performed using a software tool like Xilinx ISE, a tool from Xilinx which integrates various stages of the FPGA design cycle into one software tool:

1) Synthesis: This is the process of converting a Verilog description into a primitive gate-level netlist. The final product of the design partitioning phase is a netlist file, a text file that contains a list of all the instances of primitive components in the translated circuit and a description of how they are connected.
2) Implementation:
a. Translation: The translate step takes all of the netlists and design constraints information and outputs a Xilinx NGD (native generic database) file.

b. Mapping: The mapping step maps the above NGD file to the technology-specific components on the FPGA and generates an NCD (native circuit description) file. This is necessary because different FPGAs have different architectures, resources, and components. Among other tasks, it is responsible for the process of transforming the primitive gates and flip-flops in the netlist into LUTs (lookup tables) and other primitive FPGA elements. For example, if you described a circuit composed of many gates, but ultimately of 6 inputs and 1 output, the circuit will be mapped down to a single 6-LUT. Likewise, if you described a flip-flop it will be mapped to a specific type of flip-flop that actually exists on the FPGA.
c. Placement: This step places the mapped components in a manner that minimizes wiring, delay etc. Placement takes a mapped design and determines the specific location of each component in the design on the FPGA.
d. Routing: This step configures the programmable interconnects (wires) so as to wire the components in the design. Because the number of possible paths for a given signal is very large, and there are many signals, this is typically the most time-consuming part.

3) Programming the FPGA Device: In this step, the placed and routed design is converted to a bit-stream using the Xilinx ISE tool. The bit-stream generated by the tool (as a .bit file) is loaded on to the FPGA. This bit-stream file programs the logic and interconnects of the FPGA in such a way that the design gets implemented.

The following figure illustrates the design flow described above.

[image: image1.png]

[image: image2.png]Design Je—————1 Design Verifcation
Entry
]
l ‘Benavioral
Simiiation
Design]
Synthesis
Forct
Simiiation
[Statio Timing
Implementation naieis |
Back Tim
Annotation Simuiation

1

Xl Device. n-Girouit
Programming Veriication

Part 3: User Constraints File
Before implementing a circuit on the Nexys2 board, you must associate signal names in your design with physical pin connections and circuits on the board. This is required because I/O devices on the board (like buttons, switches, and LEDs) are physically tied to certain pins on the FPGA device, and the CAD tools must be told which pins are connected to which devices. In our example, we need to tell ISE which pins on the Xilinx chip we want A, B, Cin to be assigned to so that we can access those from switches, and where we want Cout and Sum so we can see those on the LEDs on the Nexys2 board.
The Xilinx tools use a “User Constraints File” (.ucf file) to map circuit node names in source files to physical pins on the board. (If no .ucf file is present in a project folder, the Xilinx tools will randomly assign I/O port nodes to physical pins.) The .ucf file should contain entries that specify signal names from your source files and assign those signals to specific pin numbers. Pin numbers for all I/O devices and connectors attached to the FPGA can be found in the Nexys2 board’s reference manual and/or schematic.

There are two ways to specify a .ucf file in Xilinx ISE: (i) Create a .ucf module manually using any editor and provide the filename to Xilinx ISE, or (ii) Create a .ucf module in ISE by running the User Constraints processes. For large designs, the second option is better, and so it is described below.
1. Back in the Design pane, return to the Implementation view and select your fulladder schematic. Now in the Processes pane you will see some options including User Constraints, Synthesize, and Implement Design. The first thing you will do is assign pins using the User Constraints tab. Expand that tab and select the I/O Pin Planning (PlanAhead) – Pre-Synthesis choice. This will let you assign signals to pins on the FPGA using the PlanAhead tool.

[image: image3.png]=1

x|

8 Ioplenentation|© G Simation

[
& | Hierarchy

& example
& €1 xc3s500e-57g320

&[S fulladder (fulladdersch)
XIXI2 - test (testv)
XIXI3 - test (testv)
XIXI4 - test (testv)

€2 Mo Processes Ruming

Processes: fulladder
X Design Summary/Reports
2% Design Utilities
T Create Schematic Symbol
[2 View Command Line Log File
T Check Design Rules
[2] View HDL Functional Model
(2 View HDL Instantiation Template
© % User Constraints Double click
Create Timing Constraints

a8 8(v

Floorplan Area/IO/Logic (PlanAhead)

Start | B8 Design | Files Libraries| 2 symb ¢

[image: image4.png]21 ISE Project Navigator =2

This process requires that an Implementation Constraint File (UCF) be
‘added to the project and associated with the selected design module.
Would you like Project Navigator to automatically create a UCF and add
itto the project at this time?

1f you select "No you will need to create or add an existing UCF to the
project before running this process.

Yes. No

This will open a new tool called PlanAhead which you can use to set your pin constraints. You may have to agree to add a UCF (Universal Constraints File) file to your project. You should agree to this (“Yes”).
2. The PlanAhead tool lets you set a number of different types of constraints on how the circuit is mapped to the Xilinx part. For now we will just use the pin constraints in the UCF file.

[image: image5.png]xample - [CAECE\Xilinx\example\example\planAhead_run_1

\example.ppr]

- PlanAhead 13.2

Fle Edit Tools Window Layout View Help a
B oo X d X |3 221/0 Plamning v o oc | W
BIL Netlict —oax @ Device x
< E
B fulladder
B O lets @
-0 Prinitives
[TLIT 2
[13
[LI

& Sowrces R RTL Fetlist | Timing Constra
Propertias —_o&x

@ Properties | 8 Clock Regions
/0 Perts

A rene Dir Neg Diff Pair Site Bamk 1/05td Veco Veef Drive Strength Slew Type Pull Type
S| a1 ports 5
& D s ports 6
Package Pins —_o&x
A rene Prohibit Pert 105t Dir Veco Bk BumkType Type Diff Pair Clock Veltage Min
Z|55 a1 pine G2
| ©m 10 Bk 0 Standard
=
B39 1/0 Bk 1 Standard
B ommomm: Standrd
B ® v0saxs 63 Standard
5 Benld ess Pin
« i =

B Tel Conscle | O Messages, Package Pins

1@

4

3 ¢

Q@ |

T&l =]

(&]

You can see a list of the I/O ports from your schematic in the RTL pane (click on the I/O Ports tab in the upper left window). You can set which FPGA pin they are attached to using the Site field.

3. Expand Scalar ports and double click on the Site field of each I/O Port in turn. This will allow you to update the Site field to say which FPGA pin should be used for that I/O signal. (Or, you can click one port and edit the Site in the I/O Port Property tab).
[image: image6.png][] example - [CAECE\Xilinx\example\example\planAhead_run_
File Edit Tools Window Layout View Help Q
%1 @ | (@ [EB1/0 PLamning LS
=7

KIL Tettist —oax ® Device EER
< E
@ falazter

Sies

© Primitives 2

@z c.

@ .

s .

£ Sources RETL Fetlixt | @ Tining Constra

B
Do mon
site w

Genersl | Configure

5 Clock Regions

/0 Ports

Tane Dir Site Bak

17 M1 ports 5
5 Sealar ports &
DA Tnput
DB Input

Teg Dif Pair

B B4 S

a7

Packsge Pins

\| rane Prohibit

[811 Pins

BTl Console | O Messages, S Package Pins

o std Veeo ref
1omss 25
Liwsss 25

Pert T/05td Dir

Drive Strength Slew Type Pull Type
12 5100
12 S0
Veeo Bank Bamk Type Type DifE Pair
13 vecom

—oax

Clock Voltags

(=]

ISE Integration Flow

4. How do you know which pins to assign the signals to in order to use the switches and LEDs on the Nexys2 board? You can look in the Nexys2 reference manual available from Digilent:
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
For now, note that the SW3, SW2, SW1 sliding switches on the Nexys2 board, from left to right as you look at the board with the LCD at the bottom, are on pins K17, K18, H18. Here is the diagram from the reference manual:

[image: image7.emf]
You can find more detailed information from the UCF provided by Digilent:

http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_500General.zip
This tells you how to fill out the information in PlanAhead for the switches.

Let us put A, B, and Cin on SW3, SW2, and SW1; and use LD1 and LD2 as Sum and Cout.

[image: image8.png][€ example - [CAECEXilind\example\example\planAhead run_2\exampleppr] - PlanAhead 13.2

Fle Edit Tools Window Layout View Help Q
B(w o X # 5 Q K| (@ [BE1/0 rening - CY=00 & 2N
RTL Design - fulladd . .
KL Tettist — D& % [[MPeckage X ® Device x
= xE
@ fatadier
Shets &
& Frimitives ©
@z
@
s
& Sowces, R KIL Netlist | @ Tining Constra
Froperties _oax
(® Propertien | 8 Clock Regions
™ B MesDiffrur St Bk TS Veeo Tref Deive Sesgth Sler Tpe Pl Type
=
| B AL perts © uble. click,to.changs. value.
@] 5 seater ports &
@A Input 1 LVCMOS25 2.5 12 SLOW
B 5 Tt T 1mosss 25 125100
T B Cin Input s 1owss 25 12 sLow
G Cout Dutput KIS 1 LVCMOS2S 2.5 12 SLOW
<@ sum Output s 1 LVCMOS25 2.5 12 SLOW
Paclage Pins _oax
A Fane Prohibit Pert I/0Std Dir Veeo Bamk Bamk Type Type Diff Pair Clock Voltage Mi
D[M1 pins G20 o
= 1/0 Buske 0 Standard) Standard
1/0 Bunkc 1 Standarc) 25 Standard E
B 1/0 Buake 2 Gtandard) Standard
1/0 Bk 3 Standarc) Standard "
‘ - - i J N

[TcL Consale | O Meszagas

5 Package Pins

ISE Integration Flow

5. Now save the PlanAhead settings (Save Design button on the top left of the window). This will update things in your main ISE project.

6. When you exit, you will see that a fulladder.ucf file has been added to the project

[image: image9.png]vesign

View

) Inplenentation O [Simlation

Hierarchy
& example
& €1 xc3s500e-57g320
& [0 fulladder (fulladdersch)
XIXI2 - test (testv)
XIXI3 - test (testv)
XLXI4 - test (testv)
[fulladderuct

€2 Mo Processes Ruming

Processes: fulladderuct

5¥

AHA|V |« B ||| E

User Constraints
@ edit Constraints (Text)

%

m

[0@|¥ ¥ ¥ 18

i

4 Planihead Generated physical constraints

NET "A" LOC = K17;
NET "5" LoC
NET "Cin" LoC
NET "Cout™ LoC
NET "sumr LOC

4 Planihead Generated IO constraints

3 Desien

L B e R O O

0B adiaioty 0] B C Euilimtermpletenmpletfladder 360

Part 4: Synthesis and Implementation
1. Synthesize – XST. Double click on this to synthesize your circuit. After a while you will (hopefully) get the Process “Synthesize” completed successfully message in the console. If you have already simulated your circuit and verified its correctness, there is every chance that it will synthesize correctly without problems.
[image: image10.png]08 x

) Inplenentation O [Simlation

[

& | Hierarchy
& example

© € xc3s00e- 15320

5 fulladder (fulladdersch)

oY XX 2 —test iestv) \

XLXL3 - test (test)
XLXL4 - test (test)

[fulladderuct 4 gelect scnfle first

€2 Mo Processes Ruming

Processes: fulladder

[2 View HDL Instantiation Template
© % User Constraints
% Create Timing Constraints
1/0 Pin Planning (PlanAhead) - Pre-Synthesis
1/0 Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/iO/Logic (Planihead)

EIEIEE AT N

[View RIL Schematic
[B View Technology Schematic U
T Generate PostSynthesis Simulatidp Model

€ Implement Design 2. double click ~.

In any case, there is a lot of interesting information worth looking at in the synthesis report (the data in the console window). Make sure that you end the process with a green check for this process. If you get something else, especially a red X, you will need to fix errors and re-synthesize.

2. With your source file selected (fulladder in this case), double click the Implement Design process in the Processes tab. This will translate the design to something that can physically be mapped to the specific FPGA that is on the Nexys2 board (the xc3s500e-5fg320). You should see a green check mark if this step finishes without issues. If there are issues, you need to read them for clues about what went wrong and what you should look at to fix things.
[image: image11.png]15 RNET "Cout® DRIVE

P | € Yo Processes Buming @| 16 NET "sumr DRIVE = 8;
T1©| 17 wer -2 pouo

7L | Processes: fulladder ¥\ 18 wer s purto

el [2 View HDL Instantiation Template. 19 NET "Cin" PULLUR:

5% _ User Constraints 20
{3 Create Timing Constraints
1/0 Pin Planning (PlanAhead) - Pre-Synthesis
1/0 Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/I0/Logic (PlanAhead)
Q@ Synthesize - XST L
€@ Implement Design
&) Generate Programming File
& Configure Target Device
€ Analyze Design Using ChipScope 3 R

& Start | B3 Design | Files | D) Libraries| 2 Synb <1p| C:\BCEVilinc\exanple\exanple\fulladder seh || | [2] fulladder.uct [| L] fulladder nap mrp (=10)

Consele =L

Total ctime: 1 secs

Brocess "Generate Post-Place & Route Static Timing” completed successfully

3. If you expand the Implement Design tab (which is not necessary) you will see that the Implement Design process actually consists of three parts:

a. Translate: Translate is the first step in the implementation process. The Translate process merges all of the input netlists and design constraint information, and outputs a Xilinx NGD (Native Generic Database) file. The output NGD file can then be mapped to the targeted FPGA device.

b. Map: Mapping is the process of assigning a design’s logic elements to the specific physical elements that actually implement logic functions in a device. The Map process creates an NCD (Native Circuit Description) file. The NCD file will be used by the PAR process.
c. Place and Route (PAR): PAR uses the NCD file created by the Map process to place and route your design. PAR outputs an NCD file that is used by the bitstream generator (BitGen) to create a (.bit) file. The Bit file (see the next step) is what is used to actually program the FPGA.
[image: image12.png]€2 Mo Processes Ruming

Processes: fulladder c

1/0 Pin Planning (PlanAhead) - Pre-Synthesis
1/0 Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/I0/Logic (PlanAhead)

aRES|V

QO Translate

0 Mep

QD Place & Route

€ Generate Programming File

& Configure Target Device

€ Analyze Design Using ChipScope

D Tvea TR v | ety Eonpn

4. At this point you can look at the Design Summary to find out all sorts of things about your circuit. One thing that you might want to do is to click on the Pinout Report and check that your signals were correctly assigned to the pins you wanted them to be assigned to.

[image: image13.png]DEF L 4sBEX|wa| 2233 2RIF BBET LRIPELI?
Desien «08x 3) Design Overview Bl Pin Signal Pin Pin Direciion I8
[[Viev: © fF prenentation O [simaation ° E;;\:\:’W e Number Name Usage Name rection
& | Hierarchy ° B Modle Level Uizaion 168 (k8 (SHD)
& example &l 169 K11 GND.
5 3 xc3s500e-5fg320 7] 170 K12 DIFFS 10 1IN 1/AS/RHCLKT UNUSED
| 5 B flladder (ulladdersch) = 171 K13 DIFF... 10_L11P_1/AL0/RHCLKO | UNUSED.
] X2 - test testy) = @ satic Timing 172 K14 DIFFS | 10_L12N_1/A7/RHCLK3/... UNUSED,
= XIXI3 - test (testv) 98| & Errors and Warnings 173 KI5 Cout |IOB |10L12P_1/AS/RHCLK2 OUTPUT
U4 et est) 0| B PerserMessages 174 K6 £
Ll 3 fulldderuct | B Synthesis Messages Wlmskr 4 s ineuT
m [8) Translation Messages 176 K18 B IBUF 1P INPUT
B Map Messages wu DIFF.. 101573 UNUSED
[SEYT— el P
241 | Processes: fulladder 4 o E\tg:: Messagges 179 L3 DIFF... I0_L16P3 UNUSED
st m B Al implementation Messa... || 180 14 DIFFS 10_L16N3 UNUSED
a = & Detailed Reports <||181 15 DIFFS |10_L17N_3/VREF 3 UNUSED
= €@ Create Schematic Symbol Pinout Report +]|182 16 DIFF... 10_117P.3 UNUSED
m (2 View Command Line Log File & Show Columns 182 7 vecos
€ Check Design Rules Pin Number = |[184 18 oD
[£] View HDL Functional Model I Signal Name 185 L9 GND.
View HDL Instantiation Template Pin Usage [20 D)
O e cons g Name 1w ut
1/O Pin Planning (PlanAhead) - Pre-Synthesis 10 Standard 18 oo S—
1/0 Pin Planning (PlanAhead) - Post-Synthesis ~ 10 Bank Number 4|5 i 3
Start | B3 Design |LJ Files | D) Librariez| 22 Syub<1p)[2 ISE Desien Suite TnkoCenter [| X Design Sumary (nplenented) () | [2) Eelladder_thv [| D] CIEG 4[>

5. Now right click Generate Programming File. Then, click Process Properties.
[image: image14.png]€2 Mo Processes Ruming °
e
0@ synthesize - X5T
© €@ Implement Design
Q@ Translate Righiclieks |
0O Map i

£)@ Place & Route

7 Run

€ Analyze Dc&gn Using Chi ReRun
Rerun All
B Design |1 Files | [Librarie 54 sop
Warnings View Text Report

Force Process Up-to-Date

P Implement Top Module
Design Goals & Strategies...

Bl Consote [@ Ervors | &) VarnindfBH] Process Propertis...

From the Startup Options category, set the value of FPGA Start-Up Clock as JTAG Clock. Click OK.

[image: image15.png]13 Process Properties - Startup Options

(o]

Category.

General Options
Configuration Options
Startup Options
Readback Options

Switch Name Property Name Value

-g StartUpClk: |FPGA Start-Up Clock JTAG Clock -
=]

~g DonePipe: | Enable Internal Done Pipe

-g DONE_cycle:| Done (Output Events) Default (4)
g GTS cycle: | Enable Outputs (Output Events) | Default (5)
g GWE_cycle: | Release Write Enable (Output Events) | Default (6)

CEEE]

-9 LCK_cycles | Wit for DLL Lock (Output Events) | Default (NoWait)
~g DriveDone: | Drive Done Pin High (&]

Feoperty displey Level: Standard [7] (9 Display siteh nnes

o] [) [oy s

Double click Generate Programming File. This will generate the actual configuration bits and write into a .bit file that you can use to program your Nexys2 board so as to behave like your circuit (in this case a full adder).
[image: image16.png]€2 Mo Processes Ruming

Processes: fulladder

1/O Pin Planning (PlanAhead) - Pre-Synthesis
1/O Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/I0/Logic (PlanAhead)

0@ Synthesize - XST
© €@ Implement Design

0@ Translate

0Q vap
8@ Place & Route

R8IV

& Configure Target Device
€ Analyze Design Using ChipScope

I

“

& Start | B3 Design | Files | D) Libraries| 2 symb <

The .bit file is located in the project’s folder. In this example, the location is:

C:\ECE\Xilinx\example\example\fulladder.bit
Part 4: Program the FPGA

To program the Spartan3E on the Nexys2 board we will use the ExPort tool that is part of the Adept Suite available from Digilent at

http://www.digilentinc.com/Software/Adept.cfm?Nav1=Software&Nav2=Adept
1. First attach the USB cable to the board WITHOUT launching the Adept software. The USB cable is both the data cable and the power supplier to the Nexys2 board. Make sure the Power Select Jumper is working in the USB mode and power of the board is “On”.
[image: image17.png]

2. Start the Adept software, and wait for the FPGA and the Platform Flash ROM to be recognized. Use the browse function to associate the desired .bit file with the FPGA, and/or the desired .mcs file with the Platform Flash ROM. For our lab, select JTAG mode using the Mode Jumper on the board (keep it connected to the left two pins).

[image: image18.jpg]DIGILENT

3. Browse the bit file located in the project folder; then, click Program. The configuration file will be sent to the FPGA, and the software will indicate whether programming was successful.
Now, you can check the functionalities of a full adder on the board.

[image: image19.png]A oi

nt Adept s

NEXYS 2§ Comect:[orbeardise 7]

Product: Nexys2 - 500

Config [Memory [Test [Register /0 [File 1/0 [1/0 Ex | Settings |

[pll=

Step.2

Programming Successful.
Set Config fl for XC3SSO0E: "C:\ECE Winx|example\example!fulladder.bit™
Preparing to program XC3SS00E....

Programming...

Verifying programming of device...
Programming Successful.

Overview of the Procedure

1. Design the circuit that you like to map to the FPGA part on the Nexys2 board. You can use schematics, or Verilog, or a mixture of both.

2. Simulate your circuit using the ISE Simulator and a Verilog testbench to provide inputs to the circuit. Use “if” statements in your testbench to make it self-checking.

3. Generate a UCF file to hold constraints such as pin assignments (later we will use the UCF file for other constraints like timing and speed). Use the PlanAhead tool to generate this file.

4. Assign the I/O pins in your design to the pins on the FPGA that you want them connected to.

5. Synthesize the design using the XST synthesis tool.

6. Implement the design to map it to the specific FPGA on the Nexys2 board.
7. Generate the programming file (.bit file) that has the bitstream that will configure the FPGA.

8. Connect your Nexys2 board to the host computer and use the Adept tool to program the FPGA using the bitstream.
